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Abstract. The scope of this study is to investigate the response of RC bridges, founded on single cast-
in-drilled-hole (CIDH) piles, under simultaneous earthquake-induced translational and rocking exci-
tation. This rotational excitation results from pile bending under vertically propagating S-waves 
which, in turn, is dependent on pile’s relative flexibility with respect to the surrounding soil, a pheno-
menon known as “kinematic interaction”. Typically, the rotational component of seismic excitation of 
the superstructure is not taken into consideration; neither is it prescribed in any of the modern seismic 
codes, despite the fact that analytical solutions have been proposed in the literature. Moreover, the 
potential impact of such a pile-induced rocking of CIDH supported bridges has also not been quanti-
fied yet. Along these lines, an effort is made in this paper to present an analytical and computational 
framework for parametrically studying both: (a) the nature of the rotational excitation component and: 
(b) the additional displacement demand imposed to the superstructure. For this reason, a Matlab-
based program is developed and the lateral response of multiple 4-DOF oscillators representing typi-
cal bridge structures is analytically studied, for various scenarios of excitation frequencies, super-
structure height and soil stiffness. The resulting displacement demand is then compared to the 
displacements that would develop by ignoring the rotational component of ground excitation). From 
the set of parametric analyses conducted, it is concluded that ignoring  kinematically induced rocking, 
transverse deck displacements may be significantly increased, especially in frequencies associated 
with the dynamic characteristics of the soil and the superstructure. 
 
1 INTRODUCTION 

Bridge construction industry comprises nowadays the second most demanding construction 
sector in terms of overall investment; therefore, the safety of bridges constitutes a field of ex-
tensive research worldwide. Following a series of catastrophic earthquakes around the world 
(San Fernando 1971, Loma Prieta 1989, Costa Rica 1990, Northridge 1994, Kobe 1995, Ko-
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caelli 1999, Chile 2010, Japan 2011) that caused serious damage and collapse in numerous 
bridges, the safety issue becomes more emerging. The reason is that bridges are part of com-
mercial and transportation networks whose vulnerability determines the level of social impact 
that can be caused by a seismic event. As a result, nearly all modern seismic codes prescribe 
means to ensure a target level of performance related to bridge integrity and serviceability for 
various levels of earthquake loading, so that the probability of massive human loss is reduced 
and the disruption of the social and financial activity is as limited as possible.  

Bridges, despite their relatively simple structural system compared to buildings, may exhi-
bit quite complex seismic response due to their larger dimensions, their various non-linear 
mechanisms (stoppers, shear keys, gaps, bearing-type connections), the more significant con-
tribution of higher modes, their higher sensitivity to the spatially variable properties of the 
surrounding soil and ground motion, the high soil compliance, as well as to the overall topo-
graphy of the area crossed. As a result, it is not uncommon that the overall superstructure-
foundation-subsoil system is studied as a whole and the dynamic interaction among its sub-
components is taken into consideration. Research on the dynamic interaction of such systems 
has long been studied; significant progress was achieved thanks to field observations, struc-
tural health monitoring data and strong ground motion records obtained during major seismic 
events [1-3]. Moreover, analytical solutions and advanced numerical simulation models have 
been developed [4-6] with particular emphasis on the response of pile foundations [7-14], lat-
eral spread of soil [15], lateral excitation in layered deposits [16-19] and soil liquefaction [20-
23]. Experimental results, involving complex bridge structures and pile foundations, are also 
currently available  [24-26] while significant research effort was shed light in the nature of 
kinematic soil-pile interaction [27-31]. 

Despite the extensive research, an issue that has not yet been thoroughly studied is the ad-
ditional rocking that is imposed to the bridge superstructure due to earthquake-induced pile 
bending. In particular, it is well known that the presence of a pile foundation modifies the 
amplitude and frequency content of the incoming seismic waves, thus resulting into a “Foun-
dation Input Motion” that is different from the free field one, while analytical expressions 
have been proposed for computing the aforementioned additional pile head rotation [32]; still, 
however, there is no comprehensive approach available for practical purposes that can simul-
taneously account for the translational and rotational component of seismic acceleration nei-
ther has this effect ever been quantified for the case of realistic structures. This approach 
would be of particular use, especially for bridges supported on cast-in-drilled-hole (single) 
pile foundations, a common design alternative, primarily in the U.S.  

Along these lines, the scope of this paper is to:  
(a) present a comprehensive methodology and computational framework for considering 

the translational and rotational excitation of the soil-pile-superstructure system, and  
(b) highlight those cases where ignoring the rotational component of seismic excitation, 

the displacement demand imposed to the superstructure may be significantly underestimated. 
The fundamental concepts of the approach as well as the parametric analysis scheme 

and the subsequent results, are presented in the following.  

2 PROBLEM VARIABLE DEFINITION  

The study of pile-induced pier rocking requires definition of different variables that can be 
grouped into four major categories, specifically relating to the soil, the foundation, the super-
structure (in terms of both material and geometry) and seismic excitation (primarily defined in 
terms of frequency). It is noted that some of these variables are dimensional, while others are 
dimensionless, as summarized in Table 1 below. The fundamental dimensions of the variables 
involved are mass (Μ), time (Τ) and length (L).  
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Variable 
category 

Variable Dimensions
Fundamental 
dimensions 

Kind of  
variable 

Super-
structure 

Modulus of elasticity, Ε kN/m2 M,T, L Dimensional 
Mass of superstructure, m t (of mass) M Dimensional 
Pier height, h M L Dimensional 
Pier density, ρ kg/m3 M, L Dimensional 
Pier material damping, ζ % - Dimensionless

Founda-
tion            
(RC CIDH 
pile) 

Modulus of elasticity, Εp kN/m2 M,T, L Dimensional 
Pile diameter, dp M L Dimensional 
Poisson’s ratio, vp - - Dimensionless
Density, ρp kg/m3 M, L Dimensional 
Material damping, ζp % - Dimensionless

Soil 

Modulus of elasticity, Εs kN/m2 M,T, L Dimensional 
Stratum thickness, Ηs M L Dimensional 
Poisson’s ratio, vs - - Dimensionless
Density, ρs kg/m3 M, L Dimensional 
Material damping, ζs % - Dimensionless

Excitation Cyclic frequency, ω T T Dimensional 
 

Table 1: Problem Variables 

Due to the fact the seismic excitation is assumed sinusoidal, its cyclic frequency, ω, is used 
to characterize the excitation; the amplitude of the pulse is irrelevant since the analysis is li-
near elastic. Based on the above, a total number of 11 dimensional and 5 dimensionless va-
riables is derived, in particular: Ε, m, h, ρ, Ep, dp, ρp, Es, Hs, ρs, ω and ζ, vp, ζp, vs, ζ s 
respectively. Eventually, it is only 9 out of 11 different dimensional variables that remain as 
part of the problem, due to the fact that the (concrete) material between the superstructure and 
the pile is identical, hence, it can be assumed that Ε=Εp. 

In the framework of the parametric analysis conducted herein, the modulus of Elasticity of 
concrete was taken equal to Εp=29GPa, thus corresponding to a concrete strength of 
fc=20MPa, while the stiffness of the soil, as expressed by the shear wave velocity Vs, was as-
sumed to parametrically vary between 100 and 250 m/sec. It is recalled out that circular fre-
quency of the soil ωsoil is expressed as:  ωୱ୭୧୪ = 2πVୱ/4H (1)

where H the (uniform) soil stratum thickness, as defined in Table 1.  

3 ANALYSIS OUTLINE  

Rocking of a bridge supported on CIDH piles occurs along both longitudinal and trans-
verse direction, however the latter is more critical the lower level of redundancy. It is there-
fore the transverse response of the bridge that is studied herein, assuming a 4-degree-of-
freedom oscillator, with translational and rotational DOFs at the locations of its two concen-
trated masses, one at the top of the pier and one at its bottom as it is seen in Figure 1 (m, Jm, 
mp and Jmp being the mass and moments of inertia of the pier top and base respectively, h de-
notes the oscillator height, e the eccentricity that eliminates the conjugation stiffness term Kxr, 
E the pier modulus of elasticity, ζ the damping ratio, b the pier diameter, and D the pile di-
ameter. The spring properties required for providing the translational (Kxx) and rotational (Krr) 
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stiffness of the soil-pile system are derived using appropriate equations from the literature 
[32]. 

 

   
Figure 1: Overview of the system studied and the related variables and degrees of freedom. 

The so-called kinematic response factors, Ιu for the translational and Iθ for the rocking 
seismic component which express the frequency-dependent translational and rotational ampli-
fication of motion compared to that of the free-field are also derived based on expressions 
proposed in the literature [32]. As the pile of diameter d is assumed to be excited by vertically 
propagating, harmonic S-waves with amplitude Ur and frequency ω, the rotation that is even-
tually imposed to the superstructure can be simply derived as [18]: θ(t) = 2Ι(ω)U(z = 0)/d୮ (2)

for each time step, t of the incoming harmonic motion. The overall process to derive the rota-
tional excitation time history can be summarized in the following successive steps described 
below.   
  
1st step: Assessment of the relevant problem variables (related to the soil, foundation, super-

structure and seismic excitation) as it described in Table 1. 
 
2nd step: Calculation of the pile moment of inertia and mass: 

Ip=πdସ/64 

mp=25 ൬ୢమସ ൰ L/g 
(3)

 where  L: length of the pile (assumed equal to the thickness of the stratum, Hs) 
   g: acceleration of gravity 
 
3rd step: Assessment of soil modulus of elasticity Εs and shear wave velocity Vs 
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4th step: Calculation of the free field motion at the surface (z=0) for each frequency ω in the 
time domain [33]: 

  ܷ = ܷ݁ఠ௧ = ቆ ௦ ഘೇೞቇ ݏܿ ቀ ఠೞ∗ ቁݖ ݁ఠ௧ (4)

 where  Uff: free-field motion amplitude  
   Ug: amplitude of the bedrock motion (i.e., base of the soil stratum) 
   z: depth from the ground surface 
 
5th step: Calculation of the foundation impedance functions assuming a Beam on Dynamic 

Winkler Foundation [34]: 

 ܵ௫ = ݇௫(߱) + ݅߱ܿ௫(߱) 

                 where         ݇௫ = (߱)௦,  δ=1.67(ா௲ೞ)ି.ହଷ                                             ܿ௫ܧߜ = 2ܽି ଵ/ସߩ௦ ௦ܸ݀ 1 + ቀಽೌೞ ቁହ/ସ൨ + ௦ߞ2 ఠೣ                                              ܽ = ఠௗೞ  and ܸ = ଷ.ସೞగ(ଵି௩) 
 

(5)

6th step: Calculation of the translational, kinematic interaction factor for a free head single 
pile [35]: 

(߱)௨ܫ  = ೣାఠೣாூ(రାସఒర)ିఠమ ∙ 1 + ଵଶ ቀ ఠೞఒቁଶ൨ (6)

                 where:            ݍ = ఠೞ  and ߣ = ൬ೣାఠೣସாூ ൰ଵ/ସ
 (7)

  

7th step: Calculation of the rocking, kinematic interaction factor for a free head single pile 
[35]: 

 Ι(ω) = ୩౮ା୧னୡ౮౦୍౦(୯రାସర)ି୫౦னమ ∙ ቀ ன౩ቁଶ ∙ ௗ    (8)

 
8th step: Calculation of the imposed rotation [18]: (ݐ)ߠ = ௶ഇ(ఠ)(௧,௭ୀ)ௗ/ଶ    (9)

9th step: Calculation of the translational (Kxx) and rotational (Krr) stiffness properties of the 
soil-pile system springs according to Maravas et al. [32]. It is noted that the discrete 
sign e which refers to the dynamic impedance terms after appropriate spring-pile 
head eccentricity and stiffness decoupling:  
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௫௫ܭ  = ௫߈ ଷߣܫܧ4 = ߈ ଶߣܫܧ2 = ௫௫ܭ ߣܫܧ2 = ௫ܭ ௫௫ܭ = ܭ 0 = ܭ − ௫ܭ2 ∙ ݁ + ௫௫ܭ ∙ ݁ଶ ݁ = ௫௫ܭ௫ܭ =  ߣ12

(10)

where Kxx: translational stiffness of the soil-pile system along the x direction 
 Kxr: coupled rotational-translational stiffness of the soil-pile system 
 Krr: rotational-translational stiffness of the soil-pile system 
 Krre: uncoupled rotational stiffness of the soil-pile system 
 e: spring-pile head eccentricity 

 
Having defined the translational and rotational foundation input motion and the dynamic 

properties of the flexible supported bridge structure along the transverse direction, the dynam-
ic response of the 4DOF system can be analytically defined. The equation of motion has the 
general form: ߊ ∙ ሷݑ + ܥ ∙ ሶݑ + ܭ ∙ ݑ = (11) (ݐ)

while the initial conditions can be set cast as, (0)ݑ = 0 and ݑሶ (0) = 0. In this case, the matrix 

of the displacements relative to the moving base takes the following form, ݑ =  ்[ߠ ݑ ߠ ݑ]

where (u, θ) represent the displacement and rotation of the deck mass and (up, θp) of the foun-

dation mass respectively. The solution of the equation of motion (11) is given from the well-

known Duhamel’s integral: 

(ݐ)ݍ = ߱ௗܯ1 න (߬) ∙ ݁ିఠ(௧ିఛ)௧
 ݐ)ௗ߱݊݅ݏ − ߬)݀߬, ݊ = 1,2,3,4 (12)

Thus, the ultimate, geometric coordinates of the vector u(t) can be written as: 

(ݐ)ݑ   = ∑ ߮ ∙ ேୀଵ(ݐ)ݍ  (13)

Assuming that due to the elastic response of the system considered, the damping matrix, C, 
equals to C=2mζω, the mass matrix is quadratic and given as: 

ߊ = ێێۏ
݉ۍ 0 0 00 ݉ܬ 0 000 00 ݉ 00 ۑۑے݉ܬ

ې
 (14)

The computation of the stiffness matrix requires the calculation of its individual values, i.e. 
the generalized stiffness factors of the system, ߈௦ = ൣ݇൧, where i,j=1,2,3,4. The ultimate 
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stiffness matrix diversifies for each excitation frequency, as the foundation impedance is fre-
quency dependent. In general however, stiffness matrix maybe written in the following form: 

߈ =
ێێۏ
ێێێ
ۍێێ ℎଷܫܧ12 ℎଶܫܧ6 ℎଷܫܧ12− ℎଶܫܧℎଶ6ܫܧ6 ℎܫܧ4 ℎଶܫܧ6− ℎଶܫܧℎଷ6ܫܧℎ−12ܫܧ2

ℎܫܧℎଶ2ܫܧ6−
ℎଷܫܧ12 + (߱)௫௫ܭ ℎଶܫܧℎଶ−6ܫܧ6− ℎܫܧ4 + (߱)ܭ ۑۑے

ۑۑۑ
ېۑۑ
 (15)

It is noted that the external load vector p(t) considers both the translational and rotational 
component of seismic excitation, which for the purpose of linear elastic analysis, can be de-
coupled and then the individual structural response due to base translation and rotation be su-
perimposed. For instance, the translational seismic component is: −݉ ∙ ߜ ∙ ሷݑ (ݐ) (16)

where m is the oscillator (deck) mass, δ the vector of rigid body displacements and u0(t) the 
base excitation time history, which is in turn equal to the second derivative of the free-field 
ground displacement expressed by equation (4). The vector of rigid body displacements, in 
this case, receives the following form for a unit displacement of the oscillator base.  

δ=[1 0 1 0]Τ.  (17)

Similarly to the above, the rocking excitation component is induced separately in the right-
hand side of the equation of motion, while the rocking acceleration results from the double 
derivative of the rotation, with respect to time, as it has been calculated from equation (9) 
above. For a unit rotation of the pier base, vector δ takes the following form:  

δ=[h 1 0 1]Τ.  (18)

and the two equations of motion for the two distinct translational and rotational base excita-
tion mechanism can be written as: ܯ ∙ ሷݑ (ݐ) + ߱ߞ2݉ ∙ ሶݑ (ݐ) + ܭ ∙ (ݐ)ݑ = ܯ− ∙ ߜ ∙ ,ݐ)ሷݑ ݖ = 0) ∙ ܯ ௨ܫ ∙ ሷݑ (ݐ) + ߱ߞ2݉ ∙ ሶݑ (ݐ) + ܭ ∙ (ݐ)ݑ = ܯ− ∙ ߜ ∙ (ݐ)ሷߠ = ܯ− ∙ ߜ ∙ (߱)ఝܫ ∙ ,ݐ)ሷݑ ݖ = 0)݀/2  

(19)
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4 COMPUTATIONAL FRAMEWORK 

The above analysis steps are implemented computationally through a specifically developed 
graphical MatLab environment, a sample of which is illustrated in Figure 2. The user defines 
the properties of the pile (i.e., modulus of elasticity, diameter, length, density and damping 
ratio), soil data (expressed in terms of the ratio Ep/Es, Poisson’s ratio, damping, density and 
shear waves velocity) and the desired excitation frequency range. In turn the program returns 
the variation of the translational and rotational kinematic interaction factors (Iu and Iφ) with 
the dimensionless frequency ωd/Vs. The translational and rotational excitation time histories 
are also computed to be used as the foundation input motion to the (spring-supported) super-
structure. 

Following the computation of the kinematic interaction factors, the seismic response of the 
4DOF system representing the pier-foundation-soil is derived for each excitation frequency 
(Figure 3). The fundamental period of both the fixed and flexibly supported structure is also 
computed and the maximum response quantities are derived and stored. The resulting dis-
placement maxima are compared to the deck displacements that would have been derived if 
the conventional approach (i.e., translation-only foundation input motion) was followed. Re-
sults are plotted in appropriate diagrams of dimensionless quantities as will be described be-
low. 

 

5 ANALYSIS RESULTS 

Having established the analytical and computational framework, a detailed parametric 
analysis scheme was formed and the effect of rotational excitation was investigated. In partic-
ular, the parametric study was performed by modifying four analysis parameters, related to 
the: 
 Soil stiffness: of the upper soil layer (taken uniform along the pile height) expressed in 

terms of shear wave velocity Vs which was taken equal to 100m/sec or 250m/sec, thus 
corresponding to very soft and medium soft soil conditions respectively. It is noted that 
the above variation of soil stiffness corresponds to a modulus of Elasticity of the soil Es, 
between 2.9MPa (very soft clay) to 29MPa (moderately soft clay), in other words, to a 
dimensionless variable Εp/Es lying within the range of 100-1000.   (2 cases) 

 Pier Height: taken equal to 5m, 7.5m, 12.5m and 20m leading, after appropriate mass 
modification, to fundamental periods in the transverse direction between the range 0.4-
2.5sec.          (4 cases) 

 Frequency of excitation: harmonic pulses were used ranging between (0.1-2.0sec), that is, 
having frequencies 0.5,1,2,3,4,5,6,7,8,9 and 10Hz.    (11 cases)  

 Excitation component: the flexibly supported pier was excited in the transverse direction 
by (a) the translational, (b) the rotational and (c) the combined translational and rotational 
components of the foundation input motion.     (3 cases) 

The analysis of the above 2 x 4 x 11 x 3 = 264 parametric analysis were plotted in a norma-
lized ratio, versus the dimensionless frequency term (ωD/Vs). The ratio adopted for illustrat-
ing the relative effect of the different (i.e., translational and rotational components of the 
kinematically modified seismic wave field) was: 
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Figure 2 : MatLab application for computing the translational and rotational interaction factors (Iu, Iφ) and the 

subsequent uncoupled dynamic impedance matrix terms (Κxx, Krre). 

 

 

Figure 3 : MatLab-based solution of the soil-pile-superstructure system under combined translational and rota-
tional excitation. 
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࢛ࡵ  =  (20)                                                        (࢚)ࢌࢌ,࢞ࢇ࢛(࢚)࢛,ࡹࡵࡲ   ,࢞ࢇ࢛

 
expressing the maximum displacement in time of the deck (pier top) when the kinematic inte-
raction between the soil and the pile is taken into consideration and the deck is excited exclu-
sively by the translational component of the foundation input motion (F.I.M.), over the 
maximum displacement in time of the deck due to free field base excitation (a ratio essentially 
identical to the standard kinematic interaction factor Iu of equation (6)), and ࢛ࡵାࣂ =  (21)                                                 (࢚)ࢌࢌ,࢞ࢇ࢛(࢚)ࣂశ࢛,ࡹࡵࡲ   ,࢞ࢇ࢛

expressing the maximum displacement in time of the deck (pier top) when the kinematic inte-
raction between the soil and the pile is taken into consideration and the deck is excited by 
both the translational and the rotational component of the foundation input motion (F.I.M.), 
over the maximum displacement in time of the deck due to free field base excitation.  

The absolute values of pier top displacements are also plotted so that the relative contribu-
tion of each excitation component can be assessed. The results are discussed in the following. 
 

5.1 Very Soft Soil, Vs=100m/s  

The first set of figures (Figures 4,6,8,10) illustrates the kinematic interaction factors for 
translational or combined translational base excitation of the bridge pier under study, together 
with the corresponding absolute displacements of the deck (Figures 5,7,9,11) for decreasing 
pier heights (i.e., 20m, 12.5m, 7.5m, 5.0m) and a constant, uniform soil profile of 
Vs=100m/sec. A first observation is that the kinematic interaction factors are significantly 
higher in the case of combined translational and rotational foundation input motion compared 
to the conventional approach of translational base excitation only, for the whole dimension-
less frequency range 0<ωD/Vs<1.4. These factors, Ιu+θ, can exceed the value of 10, at specific 
frequencies, for the case of a very flexible pier (h = 20m) and decay to 6.5 for the case of stif-
fer bridge structures (h = 5m) in contrast to the translational kinematic interaction factor 
which does not exceed 2 in the entire frequency range. This situation is also confirmed by the 
absolute displacement depicted in Figures 5, 7, 9 and 11 where it is clear that the deck dis-
placements are dominated by the base rotational excitation. 

It has to be noted that such a significant effect of rotational excitation cannot be genera-
lized, as the case studied clearly represents the extreme condition where the structure is ex-
cited at a single and critical frequency (in contrast to the broad frequency content of an actual 
earthquake loading), in the transverse direction which is more prone to base rotations due to 
limited redundancy, while the pier height is significant (h = 20m) and at the same time, the 
soil is very soft (Vs = 100 m/sec). One could even argue that in such cases of soft soil profiles, 
a single CIDH pile wouldn’t be a desirable foundation type anyway. As a general trend 
though, the aforementioned diagrams are 

 indicative of the fact that the earthquake –induced head rotation of a (single) CIDH pile 
imposes, apart from the inertial component, an additional rigid body motion to the pier-deck 
superstructure which has a direct effect on the pier deck displacements as it is proportional to 
the pier height (i.e., the displacement vector δrocking=[h 1 0 1]Τ). As a result, the importance of 
rotational foundation input motion in piles casted in soft soils is non-negligible under certain 
circumstances and has to be further studied.  
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Figure 4: Displacements ratio as function to dimen-
sionless frequency for Vs=100m/s, h=20m. 

Figure 5: Absolute displacements as a function of dimen-
sionless frequency for Vs=100m/s, h=20m. 

 

Figure 6: Displacements ratio as a function of di-
mensionless frequency for Vs=100m/s, h=12.5m. 

Figure 7: Absolute displacements as a function of dimen-
sionless frequency for Vs=100m/s, h=12.5m. 

Figure 8: Displacements ratio as a function of dimen-
sionless frequency for Vs=100m/s, h=7.5m. 

Figure 9: Absolute displacements as a function of di-
mensionless frequency for Vs=100m/s, h=7.5m. 
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Figure 10: Displacements ratio as a function of di-
mensionless frequency for Vs=100m/s, h=5m. 

Figure 11: Absolute displacements as a function of di-
mensionless frequency for Vs=100m/s, h=5m. 

 

5.2 Medium Soft Soil, Vs=250m/s 

Similarly to the case of soft soil, the same set of parametric analyses were conducted for 
the case of medium soil, characterized by a shear wave velocity of 250m/sec. The correspond-
ing variation of the kinematic interaction factors with and without the effect of rotational exci-
tation as well as the variation of the absolute bridge deck displacements with the 
dimensionless frequency is illustrated in Figures 12,14,16,18 and 13,15,17,19 respectively. 
Again, the impact of rotational excitation on the overall pier top displacements is clearly visi-
ble: the combined kinematic interaction factor Iu+θ  ranges from 3.8 to 8, always being higher 
than the conventional Ιu which does not exceed 1.1 along the entire frequency range and for 
all pier heights. On the other hand, as anticipated, this effect of the rotational component of 
foundation input motion, although significant, is lower than the one observed for the case of 
soft soil, and as such it is expected to be smaller for stiffer soils as well. The overall (i.e., rigid 
body and inertial) mechanism described previously, in which the rotational excitation affects 
the transverse bridge deck displacements, is again confirmed.  

Figure 12: Displacements ratio as a function of dimen-
sionless frequency for Vs=250m/s, h=20m. 

Figure 13: Absolute displacements as a function of 
dimensionless frequency for Vs=250m/s, h=20m. 
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Figure 14: Displacements ratio as a function of di-
mensionless frequency for Vs=250m/s, h=12.5m 

Figure 15: Absolute displacements as a function of di-
mensionless frequency for Vs=250m/s, h=12.5m. 

Figure 16: Displacements ratio as a function of dimen-
sionless frequency for Vs=250m/s, h=7.5m 

Figure 17: Absolute displacements as a function of 
dimensionless frequency for Vs=250m/s, h=7.5m. 

Figure 18: Displacements ratio as a function of dimen-
sionless frequency for Vs=250m/s, h=5m 

Figure 19: Absolute displacements as a function of di-
mensionless frequency for Vs=250m/s, h=5m. 
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6 CONCLUSIONS  

 A comprehensive analytical study was presented for the rocking effects of seismic motion 
in reinforced concrete bridges supported on cast-in-drilled-hole piles in homogeneous soil de-
posits. The study focuses on a 4-degree-of-freedom spring-supported pier subjected to simul-
taneous translational and rotational foundation input motion. The analytical approach is 
implemented into a comprehensive computational framework, programmed in Matlab envi-
ronment, with the use of which a set of linear, elastic analyses was performed for different 
soil types, dynamic characteristics of the bridge and frequencies of harmonic excitations.  

Through the above set of parametric analyses it is concluded that the combined considera-
tion of the translational and rotational seismic components produced by the kinematic re-
sponse of the pile foundation to vertically propagating S-waves, may reveal specific 
combinations of excitation frequency content and dynamic characteristics where the addition-
al transverse deck displacements induced by the base rotation can indeed dominate the system 
response. It was also confirmed that the effect of the rotational component is higher for cases 
of soft soil profiles and flexible, tall piers.  

Further research is certainly needed for quantifying the importance of the rotational excita-
tion, in case of more complex seismic motions, structural systems and foundation types. 
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