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Abstract: This study establishes a multi-hazard probabilistic assessment procedure for 

assessing the integrity of monopile offshore wind turbines (OWT), considering combined 

loads of stochastic wind, wave, and earthquake, as well as stochastic site and structural 

properties. The deduced cloud-based multi-hazard fragility surface deals with the entire 

operational range of inflow wind speed (i.e., 3-25 m/s), from which nonnegligible probability 

of failure is indicated under multi-hazard excitations. It is also shown that the contribution of 

seismic structural demand driven by design-level earthquakes is comparable with those 

caused by operational-level wind and wave loads. The sensitivity of the derived fragility 

surfaces to a variety of statistical regression methods is scrutinised by examining the 

efficiency and sufficiency of alternative wind – ground motion intensity measure pairs (IM-

pairs). Regression methods are comparatively assessed, and IM-pairs are provided for the 

purpose of assessing operating OWT multi-hazard fragility functions. The optimum IM pairs 

are then employed in a trained Gaussian Process Regression (GPR) scheme for cloud data 

regression to assess the multi-hazard fragility of the system. 
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1. Introduction 

In light of the rapidly growing offshore wind projects in earthquake-prone areas, the 

historical prospect of low seismic risks associated with offshore wind turbines (OWT) is 

recently re-examined. This is due to seismic-induced damages of monopile-supported OWTs 

that have been reported (Katsanos et al. 2016; Ali et al. 2020) and the result of theoretical 

studies which have highlighted the seismic vulnerability of OWTs to specific site conditions 

(Mardfekri et al. 2013), ground motion types or directionality (de Risi et al. 2018; Kaynia 

2019; Sigurðsson et al. 2020). Contrary to some other engineering structures where each 

hazard can be reliably examined separately, OWTs require a multi-hazard framework due to 

the frequent and excessive aerodynamic and hydrodynamic loads that may be coupled with 

earthquake-induced forces (Zhao et al. 2019). It was found that depending on whether 

hazards are assessed independently (as per existing design guidelines) or jointly, significant 

differences in predicted OWT structural demands may arise (Valamanesh et al. 2014). Apart 

from the variable loads, which are of random nature, large uncertainties also manifest 

through stochastically distributed structural and soil properties. They complicate the 

problem and urge for a comprehensive understanding of structural demand and capacity 

using appropriate probabilistic tools. This is typically done in the form of a dual-intensity-

measure (IM) fragility assessment, which results into fragility surfaces (Martin et al. 2019). 

It is then quite common to either assume the OWT in parked condition or to limit the 

considered range of inflow wind speed entirely below or above the rated wind speed (Asareh 

et al. 2016), to avoid the problem being entangled with OWT’s blade-pitch control. The latter 

is a power control mechanism fitted on most modern commercial-scale wind turbines, which 

actively adjusts the flow-geometry of the turbine’s blades to ensure safety and power 
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efficiency. In this study, we demonstrate that multi-hazard fragility surfaces covering the 

OWT’s entire operational range of inflow wind speed can be determined based on cloud data 

obtained from simplified, yet accurately calibrated, finite-element models, provided that 

appropriate regression methods and IM-pairs are employed. A variety of candidate 

regression models and IM-pairs were comparatively assessed, aiming to outline their ranked 

efficiency and sufficiency for assessing wind – seismic ground motion fragility functions of 

operating OWTs. 

2. Numerical modelling 

2.1. Characterisation of the site and the structure 

The NREL 5 MW reference OWT (Jonkman et al. 2009) with its standard turbine, tower, 

transition piece and monopile geometry and material properties was used in this study (Fig. 

1(a)). The seabed was situated 20.0 m deep below the mean sea level (MSL) and the 

monopile was embedded 36.0 m into the seabed. The turbine was assumed to operate in wind 

speeds ranging from 3 to 25 m/s and its rated wind speed was taken at 11.4 m/s. When the 

inflow wind speed is lower than the rated value, the turbine rotates at variable speed from 

the minimum of 6.9 rpm to the maximum of 12.1 rpm; on the other hand, when the inflow 

wind speed is above the rated value, the turbine is power controlled via a blade-pitching 

mechanism to maintain constant rotation speed and electric power output (Fig. 2). This 

results into a non-monotonic relationship between the inflow wind speed and the total rotor 

thrust exerted onto the OWT structure, as indicated in Fig. 2c. The soil profile was assumed 

homogenous and was characterised by nominal values of unit weight γsoil = 18.0 kN/m3, 

Poisson’s ratio νsoil = 0.25, internal friction angle φsoil = 35.0 °, and pile-tip shear modulus 

Gsoil,t = 60,000 kPa. Structurally, Rayleigh damping ζ = 3 % was adopted (De Risi et al. 

2018) for the first two lateral vibration modes of the OWT. 

 

Fig. 1 – Sketch of the OWT: a) geometries, b) illustration of OpenSees models. 
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Fig. 2 – Steady-state responses of the NREL 5 MW OWT versus wind speed, (a) blade-pitch angle, (b) rotor 

speed, (c) rotor thrust, after (Jonkman et al. 2009). 

Beam-on-nonlinear-Winkler-spring representations of the OWT (Fig. 1b) were modelled in 

earthquake engineering software OpenSees v3.2.0 (McKenna 2011), whilst the aero-hydro-

servo-elastic simulator OpenFAST v2.3.0 (NREL 2020) was used in conjunction, to 

individually calibrate each wind and wave input time histories in a corresponding pair of 

base-fixed OWT models. This process ensured the accuracy of wind and wave inputs before 

they were used in the subsequent OpenSees nonlinear time history analyses. For seismic 

excitation, 300 earthquake records of different ground motion characteristics were selected 

according to a set of well-established rules (Katsanos et al. 2014) to prevent bias. 

Four established engineering demand parameters (EDP) were sourced from the literature to 

describe failure criteria associated to two limit states. Two kinematics EDPs defined the 

serviceability limit state (SLS), namely the tower-top chord rotation rtop and the tower-top 

lateral acceleration atop. A threshold of ±0.5 ° was prescribed for rtop (De Risi et al. 2018) 

and a threshold of 0.6 m/s2 was prescribed for atop (Ramachandran et al. 2017). The ultimate 

limit state (ULS) was defined by the other two stress-related EDPs, namely the Von Mises-

equivalent design stress σeq and the Eurocode-compliant buckling-check stresses (CEN 

(European Committee for Standardisation, 2007), which were derived along the perimeter 

and the elevation of the entire OWT support-structure. The nominal yield strength of steel 

was taken as fy = 3.55×105 kPa to calculate the above two stress related EDPs. For each limit 

state, failure was identified when the demand to capacity ratio Y exceeded unity. 

2.2. Latin Hypercube sampling of stochastic model parameters 

It is known that model uncertainties have an important impact on all limit states employed 

to assess the performance of OWTs (Wilkie and Galasso 2020). On this account, stochastic 

assignment of model parameters was applied for all loads, OWT geometries, structural 

material properties, and soil properties. Latin Hypercube sampling (Olsson et al. 2003) was 

performed to generate 300 samples of near-random model parameters from a prescribed 

multidimensional distribution. Stochastically sampled model parameters (Fig. 3) included 

average wind speed Vave, significant wave height Hs, representative OWT wall-thickness t, 

steel yield strength fy, steel elastic modulus Esteel, soil unit weight γsoil, soil friction angle φsoil, 

soil shear modulus at pile-tip Gsoil,t, and ground motion direction θ. The targeted probability 

distributions for model parameters were acquired from the literature (Ferreira and Guedes 

Soares 1999; Hess et al. 2002; Jones et al. 2002; Wais 2017). All randomly assigned model 

parameters were assumed to be uncorrelated, except for the generated mean wind speeds and 

significant wave heights (Fig. 4), between which a correlation coefficient of 0.85 was applied 

(De Flippo 2015).  
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Fig. 3 – Latin hypercube sampling of the nine stochastically assigned model parameters. The orange solid 

curves are the targeted probability density functions (PDF), the orange dashed lines mark nominal values 

taken for each model parameters except for the uniformly distributed earthquake directionality, and the blue 

bins represent 300 generated samples.  

 

Fig. 4 – (a) Correlation between generated samples Hs and Vave, and (b) an example of uncorrelated samples 

of φsoil and Esteel. 

3. Cloud-based multi-hazard fragility analyses 

After the completion of parameter sampling and finite-element model generation, 300 

nonlinear time history analyses were conducted in OpenSees to produce cloud datasets for 

each limit state. A multiple regression analysis was then conducted for each logarithmic 

transformed dataset, which consisted of one dependent variable, i.e., demand over capacity 

ratio, ln(Y), and two independent variables, i.e., wind and ground motion IMs, [ln(IMeq), 

ln(IMwind)]. Such a regression analysis outputs estimations of conditional logarithmic mean 

and standard deviation across the desired range of prediction, can then be used to calculate 

multivariable fragility functions (Elefante et al. 2010). 

3.1.1. Implementation and assessment of candidate regression models 

Seven regression models were examined in this study, inlcuding linear regression (LR), 2nd 

to 5th order polynomial regression (PR) models, generalised linear model (GLM), and a 

trained Gaussian Process Regression (GPR) model. Among these models, both the LR and 

the GLM provide linear approximations of the relationship between 300 scalar-valued 

observations of Y and the vector-valued explanatory variable [IMeq, IMwind], whereas the PR 

and the GPR models are of nonlinear nature. 
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All regression analyses were done in MATLAB (Mathworks 2020). Key MATLAB 

functions for the LR and PR models include: fit for fitting the data to obtain LR or PR model 

parameters; confint for obtaining 95 % confidence intervals of the fitted surface; normfit and 

makedist for determining the value of logarithmic standard deviation; and normcdf for 

calculating the fragility function. For the GLM method, key MATLAB functions used glmfit 

for fitting the data to obtain GLM parameters and glmval for computing predictions given 

the estimated GLM parameters. Additionally, the 300 observations of demand over capacity 

ratio Y were transformed into categorical data which follows binomial distribution, (i.e., y = 

0 indicated a safe case and y = 1indicated a failed case). For categorical data, the normal 

inverse cumulative distribution function, also known as the probit function in the context of 

GLM, was used as the GLM link function. For the GPR model, key MATLAB functions 

used include fitrgp for training of the model; trainedModel.RegressionGP.Sigma for 

acquiring logarithmic standard deviation of the prediction; trainedModel.predictFcn for 

acquiring logarithmic mean of the prediction; and normcdf for calculating the fragility 

function. 

Efficiency of the regression models were assessed by comparing their logarithmic standard 

deviation βY|[IMeq, IMwind] and root-mean-square error (RMSE) values. Visual inspection, which 

is of equal importance, of the cloud data fitted surfaces and the derived fragility surfaces was 

also performed to avoid strong underfitting or overfitting of the data. 

3.1.2. Assessment of candidate IM-pairs 

A variety of wind and ground motion intensity measures (IM) were assessed as combinations 

of IM-pairs. Candidate IMs are summarised in Table 1. 

Table 1. Candidate wind (IMwind) and ground motion (IMeq) intensity measures. 

 Type of IM Symbol Description 

IMeq 

acceleration-related 

PGA peak ground acceleration 

Ia Arias intensity 

SMA sustained maximum acceleration 

velocity-related 
PGV peak ground velocity 

SMV sustained maximum velocity 

displacement-related PGD peak ground displacement 

time-related PGV/PGA peak ground velocity divided by peak ground acceleration 

structure-specific Sa(T1) spectral acceleration at the OWT’s first natural period 

IMwind 

wind-speed-related 
Vave short-term average wind speed 

Vmax.instant. maximum instantaneous wind velocity 

structure-specific 
FFTv(T1) 

fast Fourier transform (FFT) of Vave at 1st mode frequency 

of the OWT 

FFTv,filtered(T1) Savitzky-Golay filtered FFTv(T1) 

Efficiency of the IM-pairs was assessed by comparing their conditional logarithmic standard 

deviation βY|[IMeq, IMwind] and root-mean-square error (RMSE) values determined using a 

trained GPR model. Relative sufficiency of the IM-pairs was assessed by comparing their 

coefficient of determination R2 (Wang et al. 2018).  

4. Results 

4.1. Regression models 
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Fig. 5 – Comparison of ULS fragility surfaces computed by: (a) LR model, (b) GLM, (c)-(f) 2nd to 5th order 

PR models, (g) trained GPR. In each subfigure, the dashed curve marks the locations where Sa(T1) = Se(T1) = 

0.189 g, whereas the solid curve is an isopleth with P(YULS > 1) ≡ P(YULS > 1|[0.189 g, 11.4 m/s]). 
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Fig. 6 – Comparison of SLS fragility surfaces computed by: (a) LR model, (b) GLM, (c) - (f) 2nd to 5th order 

PR model, (g) trained GPR. In each subfigure, the dashed curve marks the locations where Sa(T1) = Se(T1) = 

0.189 g, whereas the solid curve is an isopleth with P(YSLS > 1) ≡ P(YSLS > 1|[0.189 g, 11.4 m/s]). 
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Comparison of coupled wind – ground motion fragility surfaces for ULS and SLS were 

computed by the seven candidate regression methods as shown in Fig. 5 and Fig. 6. The LR 

and the GLM methods, which share the same linear principle, were found unable to 

adequately capture the underlying pattern from the obtained Y-[IMeq, IMwind] cloud data. 

Vastly underfitted fragility surfaces have been produced which failed to reveal the non-

monotonic nature of the structural demand versus wind speed relation caused by the OWT 

blade-pitch control mechanism (Fig. 2c). The PR models and the GPR model, due to their 

nonlinear nature, were able to reflect better the trend of the data. This can be confirmed by 

a protuberance located along the OWT rated wind speed of 11.4 m/s, at which the total rotor 

thrust exserted onto the OWT tower was known to be maximised. For the PR models, 

however, it was noted that evident underfitting or overfitting could occur when the order of 

the polynomial was selected to be either too small or too large (this is also data-dependent). 

On the other hand, sophistication of the trained GPR model was revealed qualitatively by its 

ability to yield a fitted surface with the most complex shape without producing noticeable 

overfitting. Quantitatively, a comparison of the multi-variable logarithmic standard 

deviation βY|[IMeq, IMwind] and root-mean-square error (RMSE) of these regression models (not 

applicable for GLM) confirmed the efficiency of the trained GPR model in terms of its much 

lower statistical dispersion (Table 2). 

Additionally, two types of curves were plotted on each computed fragility surface. The 

dashed red curve refers the Eurocode-based design elastic spectral acceleration, Se(T1) = 

0.189 g, which was calculated assuming an anonymous site with authority-specified 

reference peak ground acceleration on type A ground agR = 0.5 g (CEN (European 

Committee for Standardisation), 2004). The solid red curve is an isopleth, on which P(YULS 

> 1) ≡ P(YULS > 1|[0.189 g, 11.4 m/s]), where 0.189 g is the abovementioned design spectral 

acceleration and 11.4 m/s is the OWT’s rated operational wind speed. It can be observed that 

an operating OWT’s probability of failure under this design-level load combination was 

similar to that when a feathered OWT is subjected to solely ground motion but around twice 

more intensive. 

Table 2. Ranked recommendations of IM-pairs for operating OWT multi-hazard fragility assessment. 

Index Ranked Recommendations 

β
Y|[IMeq, IMwind]

 GPR model > PR model (3rd order) > rest 
RMSE GPR model > PR model (4th order) > rest 

4.2. IM-pairs 

Relative efficiency and sufficiency rankings of wind – ground motions IM-pairs are 

summarised in Table 3. Note that single-IM proxies based on simple linear regressions 

conducted on Y-IM data pairs, which are typically used in seismic IM evaluation for ordinary 

civil structures, are not applicable for wind. This is because simple linear regression is 

inappropriate for the non-monotonically related magnitudes of OWT structural demand and 

operational-level wind. By assessing IM-pairs collectively using statistical indexes 

associated with the GPR model, which is multivariable and nonlinear, it was found that 

[IMeq, IMwind] = [PGV, V
ave

] and [IMeq, IMwind] = [SMV, V
ave

] were among the best overall 

performers. Moreover, the commonly used IM-pair of [IMeq, IMwind] = [Sa(T1), Vave] was 

found to be not only reasonably adequate in terms of its pure efficiency and sufficiency 

performances, but it could also be more easily compared to code-compliant quantities such 

as the Eurocode 8 design elastic spectral acceleration Se(T1), as well as many results from 

past studies in the literature. On the contrary, other IM-pairs were found inappropriate for 

assessing operating OWT multi-hazard fragility functions. The frequently used [IMeq, 

IMwind] = [PGA, Vave] was found to be among the worst performers. We also noted that when 
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the average wind speed Vave was included in an IM-pair, the IM-pair’s performance was 

often but not necessarily always better than other wind IMs in the combination, with 

differences that were always marginal. This is potentially due to the fact that periods with 

significant spectral accelerations in a typical wind spectrum are nowhere near the 

fundamental period of a typical monopile-supported OWT (De Risi et al. 2018). Considering 

the popularity of Vave in the literature, not only for wind turbines but also as a legacy passed 

down from studies of skyscrapers or tall bridges (which, unlike operating wind turbines, are 

not aerodynamically controlled against wind speed), it is still considered preferable. 

Table 3. Ranked recommendations of IM-pairs for operating OWT multi-hazard fragility assessment. 

Index Ranked Recommendations 

efficiency 
β

Y|[IMeq, IMwind]
 [PGV, V

ave
] ≈ [SMV, V

ave
] > [S

a
(T

1
), V

ave
] > [PGD, V

ave
] > rest 

RMSE [PGV, V
ave

] ≈ [SMV, V
ave

] > [S
a
(T

1
), V

ave
] > [I

a
, V

ave
] > rest 

sufficiency R
2

 [PGV, V
ave

] ≈ [SMV, V
ave

] > [S
a
(T

1
), V

ave
] > [I

a
, V

ave
] > rest 

5. Conclusions 

This study evaluates multi-hazard fragility functions for stochastically modelled operating 

monopile-supported OWTs. Impact of employing different statistical regression models and 

IM-pairs for deriving OWT multi-hazard fragility surfaces were scrutinised and the main 

findings are summarised below: 

• OWTs are found to have non-negligible probability of exceeding SLS and ULS failing 

criteria under combined exposure to moderate (design-level) seismicity and wind load. 

• Contrary to conclusions drawn from some of the recent studies, such as (Katsanos et al. 

2017) and (Asareh et al. 2016) where “environmental” loads were significantly 

overpowered by earthquake forces, the present study found that the contribution of OWT 

structural demand driven by design-level earthquake excitations and those driven by 

operational-level wind and wave loads are comparable. 

• The GPR model was found to be the best candidate regression method for assessing 

multi-hazard fragility functions of operating monopile-supported OWTs. Other 

nonlinear regression methods are also deemed suitable, such as a PR model with an 

appropriate order. Linear-based regression methods were found inappropriate in cases 

where the OWT’s entire range of operational inflow wind speed is of interest. 

• A velocity-related ground motion IM in combination with average wind speed Vave 

makes the most efficient and sufficient IM-pair. The frequently used [IMeq, IMwind] = 

[Sa(T1), Vave] was found adequate in terms of IM performance, but are also desirable for 

its good interpretability with reference to established design codes and a vast number of 

published studies. The other frequently used IM-pair, [IMeq, IMwind] = [PGA, Vave], were 

deemed undesirable for assessing multi-hazard fragility functions of operating monopile-

supported OWTs. 
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