Skip to main content

Journal papers by research theme (incl. selected conference papers)

Low-cost Seismic Isolation and Response Control of Structures

Timber Buildings

[J.103] Skandalos, K., Sextos, A.G., Tesfamariam, S. (2023) “Displacement-based design and seismic performance assessment of friction-dissipating light-timber frames coupled with a self-centering CLT wall”, ASCE Journal of Performance of Constructed Facilities, 38(5).

https://doi.org/10.1061/JPCFEV.CFENG-4525


Sand-PVC-Sand Isolation System

[J.99]   Sezer, Υ.Μ., Diambra, Α., Ge, Β., Dietz, Μ., Αlexander, Ν., Sextos, A.G., (2023) “Experimental determination of friction at the interface of a sand-based, seismically isolated foundation”, Acta Mechanica.

https://doi.org/10.1007/s00707-023-03802-0

[J.81]   Tsiavos, A., Sextos, A. G., Stavridis, A., Dietz, M., Dihoru, L., & Alexander, N. A. (2021). Experimental investigation of a highly efficient, low-cost PVC-Rollers Sandwich (PVC-RS) seismic isolation. Structures, 33, 1590–1602.

https://doi.org/10.1016/j.istruc.2021.05.040  

[J.80]   Tsiavos, A., Sextos, A. G., Stavridis, A., Dietz, M., Dihoru, L., di Michele, F., & Alexander, N. A. (2021). Low-cost hybrid design of masonry structures for developing countries: Shaking table tests. Soil Dynamics and Earthquake Engineering, 146, 106675.

https://doi.org/10.1016/j.soildyn.2021.106675

[J.68]   Tsiavos, A., Haladij, P., Sextos, A. G., & Alexander, N. A. (2020). Analytical investigation of the effect of a deformable sliding layer on the dynamic response of seismically isolated structures. Structures, 27, 2426–2436.

https://doi.org/10.1016/j.istruc.2020.08.016  

[J.63]   Tsiavos, A., Sextos, A., Stavridis, A., Dietz, M., Dihoru, L., & Alexander, N. A. (2020). Large-scale experimental investigation of a low-cost PVC ‘sand-wich’ (PVC-s) seismic isolation for developing countries. Earthquake Spectra, 36(4), 1886–1911.

https://doi.org/10.1177/8755293020935149  

[J.52]   Tsiavos, A., Alexander, N. A., Diambra, A., Ibraim, E., Vardanega, P. J., Gonzalez-Buelga, A., & Sextos, A. G. (2019). A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dynamics and Earthquake Engineering, 125, 105731.

https://doi.org/10.1016/j.soildyn.2019.105731

[BC.21]    Sextos, A.G., Zhang, Z. and N.A. Alexander (2022) “Large-scale testing for enhancing the resilience of schools in seismic regions: challenges and cost-efficient solutions”, Invited Lecture. Progresses in European Earthquake Engineering and Seismology. ECEES, Springer Proceedings in Earth and Environmental Sciences (R. , Vacareanu & C. Ionescu, Eds.; pp. 433–448). Springer.

https://doi.org/10.1007/978-3-031-15104-0_26


Inerters and TMDs

[J.66]     Radu, A., Lazar, I. F., Neild, S. A., & Sextos, A. G. (2020). Risk assessment of cables vibration-suppressed with tuned-inerter dampers. Engineering Structures, 222, 111127.

https://doi.org/10.1016/j.engstruct.2020.111127


Seismic Rocking

[J.79]   Vassiliou, M. F., Cengiz, C., Dietz, M., Dihoru, L., Broccardo, M., Mylonakis, G., Sextos, A. G., & Stojadinovic, B. (2021). Data set from shake table tests of free-standing rocking bodies. Earthquake Spectra, 37(4), 2971–2987.

https://doi.org/10.1177/87552930211020021

[J.73]   Vassiliou, M. F., Broccardo, M., Cengiz, C., Dietz, M., Dihoru, L., Gunay, S., Mosalam, K. M., Mylonakis, G., Sextos, A. G., & Stojadinovic, B. (2021). Shake table testing of a rocking podium: Results of a blind prediction contest. Earthquake Engineering & Structural Dynamics, 50(4), 1043–1062.

https://doi.org/10.1002/eqe.3386

Journal papers by research theme (incl. selected conference papers)

Ground motion Selection and Generation for Uniform and Spatially Variable Excitation

Ground Motion Selection And Scaling

[J.89]   Ji, D., Katsanos, E. I., Trevlopoulos, K., & Sextos, A. G. (2022). Decoupled Fourier Amplitude spectrum to identify the inelastic dynamic characteristics of structures under earthquake loading. Soil Dynamics and Earthquake Engineering, 162, 107462.
https://doi.org/10.1016/j.soildyn.2022.107462

[J.51]   Mergos, P. E., & Sextos, A. G. (2019). Selection of earthquake ground motions for multiple objectives using genetic algorithms. Engineering Structures, 187, 414–427.
https://doi.org/10.1016/j.engstruct.2019.02.067

[J.38]   Katsanos, E. I., & Sextos, A. G. (2018). Structure-specific selection of earthquake ground motions for the reliable design and assessment of structures. Bulletin of Earthquake Engineering, 16(2), 583–611.
https://doi.org/10.1007/s10518-017-0226-3

[J.09]* Katsanos, E. I., Sextos, A. G., & Manolis, G. D. (2010). Selection of earthquake ground motion records: A state-of-the-art review from a structural engineering perspective. Soil Dynamics and Earthquake Engineering, 30(4), 157–169.  

* Most Cited Article of Soil Dynamics and Earthquake Engineering within 2009-2014
https://doi.org/10.1016/j.soildyn.2009.10.005
   


Spatial Variability Of Earthquake Ground Motion

[J.90]   Feng, R., Papadopoulos, S. P., Yuan, W., & Sextos, A. G. (2022). Loss estimation of curved bridges considering the incidence angle and spatial variability of earthquake ground motion. Soil Dynamics and Earthquake Engineering, 163, 107523.
https://doi.org/10.1016/j.soildyn.2022.107523

[J.82]   Feng, R., Yuan, W., & Sextos, A.G. (2021). Probabilistic loss assessment of curved bridges considering the effect of ground motion directionality. Earthquake Engineering & Structural Dynamics, 50(13), 3623–3645.
https://doi.org/10.1002/eqe.3525

*Innovative Paper of the Year for 2022 by the College of Civil Engineering at Tongji University      

[J.60]   Papadopoulos, S. P., & Sextos, A. G. (2020). Simplified design of bridges for multiple-support earthquake excitation. Soil Dynamics and Earthquake Engineering, 131, 106013.
https://doi.org/10.1016/j.soildyn.2019.106013          

[J.44]   Papadopoulos, S. P., & Sextos, A. G. (2018). Anti-symmetric mode excitation and seismic response of base-isolated bridges under asynchronous input motion. Soil Dynamics and Earthquake Engineering, 113.
https://doi.org/10.1016/j.soildyn.2018.06.004

[J.21]  Sextos, A. G., Karakostas, C., Lekidis, V., & Papadopoulos, S. (2015). Multiple support seismic excitation of the Evripos bridge based on free-field and on-structure recordings. Structure and Infrastructure Engineering, 11(11), 1510–1523.
https://doi.org/10.1080/15732479.2014.977302

[J.15]   Katsanos, E. I., & Sextos, A. G. (2013). ISSARS: An integrated software environment for structure-specific earthquake ground motion selection. Advances in Engineering Software, 58, 70–85.
https://doi.org/10.1016/j.advengsoft.2013.01.003     

[J.11]   Sextos, A. G., Katsanos, E. I., & Manolis, G. D. (2011). EC8-based earthquake record selection procedure evaluation: Validation study based on observed damage of an irregular R/C building. Soil Dynamics and Earthquake Engineering, 31(4), 583–597.
https://doi.org/10.1016/j.soildyn.2010.10.009

[J.07]   Sextos, A. G., & Kappos, A. J. (2009). Evaluation of seismic response of bridges under asynchronous excitation and comparisons with Eurocode 8-2 provisions. Bulletin of Earthquake Engineering, 7(2), 519–545.
https://doi.org/10.1007/s10518-008-9090-5

[J.06]   Burdette, N. J., Elnashai, A. S., Lupoi, A., & Sextos, A. G. (2008). Effect of Asynchronous Earthquake Motion on Complex Bridges. I: Methodology and Input Motion. Journal of Bridge Engineering, 13(2), 158–165.
https://doi.org/10.1061/(ASCE)1084-0702(2008)13:2(158)

[J.03]  Sextos, A. G., Kappos, A. J., & Pitilakis, K. D. (2003). Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 2: Parametric study. Earthquake Engineering & Structural Dynamics, 32(4), 629–652.
https://doi.org/10.1002/eqe.242                                                         

[J.02]   Sextos, A. G., Pitilakis, K. D., & Kappos, A. J. (2003). Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 1: Methodology and analytical tools. Earthquake Engineering & Structural Dynamics, 32(4), 607–627.
https://doi.org/10.1002/eqe.241                                    


Angle Of Incidence

[J.64]   Feng, R., Deng, T., Lao, T., Sextos, A. G., & Yuan, W. (2020). Theory and experimental verification of a resultant response-based method for assessing the critical seismic excitation direction of curved bridges. Engineering Structures, 216, 110713.
https://doi.org/10.1016/j.engstruct.2020.110713

[J.27]   Taskari, O., & Sextos, A. G. (2015). Multi-angle, multi-damage fragility curves for seismic assessment of bridges. Earthquake Engineering & Structural Dynamics, 44(13), 2281–2301.
https://doi.org/10.1002/eqe.2584


Rotational Seismic Excitation

[J.35]   Mylona, E.-K. V., Sextos, A. G., & Mylonakis, G. E. (2017). Rotational seismic excitation effects on CIDH pile-supported bridge piers. Engineering Structures, 138, 181–194.
https://doi.org/10.1016/j.engstruct.2017.01.071

[J.25]   Sextos, A. G., Mylonakis, G. E., & Mylona, E.-K. (2015). Rotational excitation of bridges supported on pile groups in soft or liquefiable soil deposits. Computers & Structures, 155, 54–66.
https://doi.org/10.1016/j.compstruc.2015.02.013


Inelastic Spectra / Period Elongation

[J.23]   Katsanos, E. I., & Sextos, A. G. (2015). Inelastic spectra to predict period elongation of structures under earthquake loading. Earthquake Engineering & Structural Dynamics, 44(11), 1765–1782.
https://doi.org/10.1002/eqe.2554

[J.19]   Katsanos, E. I., Sextos, A. G., & Elnashai, A. S. (2014). Prediction of inelastic response periods of buildings based on intensity measures and analytical model parameters. Engineering Structures, 71, 161–177.
https://doi.org/10.1016/j.engstruct.2014.04.007

Journal papers by research theme (incl. selected conference papers)

Soil-Structure Interaction

Integral Bridges

[J.97]   Luo, S., Huang, Z., Asia, Y., de Luca, F., de Risi, R., Harkness, J., le Pen, L., Watson, G., Milne, D., Chapman, D., Sextos, A. G., Metje, N., Mylonakis, G., Cassidy, N., Jefferson, I., Smethurst, J., Richards, D., Taylor, C., Powrie, W., & Rogers, C. (2023). Physical and numerical investigation of integral bridge abutment stiffness due to seasonal thermal loading. Transportation Geotechnics, 101064.
https://doi.org/10.1016/j.trgeo.2023.101064  

[J.85]   Luo, S., de Luca, F., de Risi, R., le Pen, L., Watson, G., Milne, D., Chapman, D., Sextos, A. G., Cassidy, N., Jefferson, I., Metje, N., Smethurst, J., Richards, D., Mylonakis, G., Taylor, C., Powrie, W., & Rogers, C. D. F. (2022). Challenges and perspectives for integral bridges in the UK: PLEXUS small-scale experiments. Proceedings of the Institution of Civil Engineers – Smart Infrastructure and Construction, 175(1), 27–43.
https://doi.org/10.1680/jsmic.21.00020          

[J.74]   Fiorentino, G., Cengiz, C., de Luca, F., Mylonakis, G., Karamitros, D., Dietz, M., Dihoru, L., Lavorato, D., Briseghella, B., Isakovic, T., Vrettos, C., Topa Gomes, A., Sextos, A. G., & Nuti, C. (2021). Integral abutment bridges: Investigation of seismic soil‐structure interaction effects by shaking table testing. Earthquake Engineering & Structural Dynamics, 50(6), 1517–1538.
https://doi.org/10.1002/eqe.3409

 


Abutment-embankment Interaction (Seat-type Bridges)

[J.24]   Taskari, O., & Sextos, A. G. (2015). Probabilistic Assessment of Abutment-Embankment Stiffness and Implications in the Predicted Performance of Short Bridges. Journal of Earthquake Engineering, 19(5), 822–846.
https://doi.org/10.1080/13632469.2015.1009586


Soil-foundation-bridge Interaction (Continuous Bridges)

[J.20]   Manos, G. C., Pitilakis, K. D., Sextos, A. G., Kourtides, V., Soulis, V., & Thauampteh, J. (2015). Field Experiments for Monitoring the Dynamic Soil–Structure–Foundation Response of a Bridge-Pier Model Structure at a Test Site. Journal of Structural Engineering, 141(1).
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001154

[J.01]   Kappos, A. J., & Sextos, A. G. (2001). Effect of Foundation Type and Compliance on Seismic Response of RC Bridges. Journal of Bridge Engineering, 6(2), 120–130.
doi.org/ 10.1061/(ASCE)1084-0702(2001)6:2(120)


Long Span Bridges Response / Structural Health Monitoring

[J.46]  Faraonis, P., Sextos, A. G., Papadimitriou, C., Chatzi, E., & Panetsos, P. (2019). Implications of subsoil-foundation modelling on the dynamic characteristics of a monitored bridge. Structure and Infrastructure Engineering, 15(2), 180–192.
https://doi.org/10.1080/15732479.2018.1503689

[J.37]   Stefanidou, S. P., Sextos, A. G., Kotsoglou, A. N., Lesgidis, N., & Kappos, A. J. (2017). Soil-structure interaction effects in analysis of seismic fragility of bridges using an intensity-based ground motion selection procedure. Engineering Structures, 151, 366–380.
https://doi.org/10.1016/j.engstruct.2017.08.033        

[J.29]   Sextos, A. G., Faraonis, P., Zabel, V., Wuttke, F., Arndt, T., & Panetsos, P. (2016). Soil–Bridge System Stiffness Identification through Field and Laboratory Measurements. Journal of Bridge Engineering, 21(10).
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000917


Kinematic Interaction

[J.86]   Sotiriadis, D., Klimis, N., Margaris, B., Sextos, A. G., & Pelekis, P. (2022). Improved correlation between foundation and free‐field ground motions through strong motion recordings and kinematic soil–structure interaction analyses. Earthquake Engineering & Structural Dynamics, 51(4), 725–743.
https://doi.org/10.1002/eqe.3588       

[J.77]   Sotiriadis, D., Margaris, B., Klimis, N., & Sextos, A. G. (2021). Implications of high-frequency decay parameter, “κ-kappa”, in the estimation of kinematic soil-structure interaction effects. Soil Dynamics and Earthquake Engineering, 144, 106665.
https://doi.org/10.1016/j.soildyn.2021.106665          

[J.65]   Sotiriadis, D., Klimis, N., Margaris, B., & Sextos, A. G. (2020). Analytical expressions relating free-field and foundation ground motions in buildings with basement, considering soil-structure interaction. Engineering Structures, 216(available online), 110757.
https://doi.org/10.1016/j.engstruct.2020.110757       

[J.54]   Sotiriadis, D., Klimis, N., Margaris, B., & Sextos, A. G. (2019). Influence of structure–foundation–soil interaction on ground motions recorded within buildings. Bulletin of Earthquake Engineering, 17(11), 5867–5895.
https://doi.org/10.1007/s10518-019-00700-6 

[IC.76]   Sextos A.G., Ekonomakis, MM. (2016) “Frequency Dependent Proxies of Soil-Structure Interaction Impact for Typical R/C Buildings”, 1st International Conference on Natural Hazards and Infrastructure, 28-30 June, 2016, Chania, Greece.


Lumped Parameter Models

[J.43]   Lesgidis, N., Sextos, A., & Kwon, O.-S. (2018). A frequency-dependent and intensity-dependent macroelement for reduced order seismic analysis of soil-structure interacting systems. Earthquake Engineering & Structural Dynamics, 47(11), 2172–2194.
https://doi.org/10.1002/eqe.3063           

[J.30]   Lesgidis, N., Sextos, A. G., & Kwon, O.-S. (2017). Influence of frequency-dependent soil-structure interaction on the fragility of R/C bridges. Earthquake Engineering & Structural Dynamics, 46(1), 139–158.
https://doi.org/10.1002/eqe.2778

[J.26]   Lesgidis, N., Kwon, O.-S., & Sextos, A. G. (2015). A time-domain seismic SSI analysis method for inelastic bridge structures through the use of a frequency-dependent lumped parameter model. Earthquake Engineering & Structural Dynamics, 44(13), 2137–2156.
https://doi.org/10.1002/eqe.2573       


Liquefaction Susceptibility & Effect On Bridges

[J.83]   Pokhrel, R. M., Gilder, C. E. L., Vardanega, P. J., de Luca, F., de Risi, R., Werner, M. J., & Sextos, A. G. (2022). Liquefaction potential for the Kathmandu Valley, Nepal: a sensitivity study. Bulletin of Earthquake Engineering, 20(1), 25–51.
https://doi.org/10.1007/s10518-021-01198-7 

[IC.83]   Boukovalas, G., Psycharis, I., Gantes, C., Sextos, A., Kappos, A. and Mylonakis, G. (2017) “Performance-based design of bridge piers in liquefiable sites with shallow foundation and limited ground improvement”, 3rd International Conference on Performance-based Design in Earthquake Geotechnical Engineering (PBD-III), Vancouver, BC, Canada, July 16-19.

Journal papers by research theme (incl. selected conference papers)

Geographically Distributed and Hybrid Testing

[J.69]   Zhang, Z., Park, J., Kwon, O.-S., Sextos, A. G., Strepelias, E., Stathas, N., & Bousias, S. (2021). Hybrid Simulation of Structure-Pipe-Structure Interaction within a Gas Processing Plant. Journal of Pipeline Systems Engineering and Practice, 12(2).
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000526

[J.36]   Bousias, S., Sextos, A. G., Kwon, O.-S., Taskari, O., Elnashai, A., Evangeliou, N., & di Sarno, L. (2019). Intercontinental Hybrid Simulation for the Assessment of a Three-Span R/C Highway Overpass. Journal of Earthquake Engineering, 23(7), 1194–1215.
https://doi.org/10.1080/13632469.2017.1351406

[BC.15]    Sextos, A.G., Boussias, E., & O. Taskari (2014) “Recent Advances in Real Time and Hybrid Simulation for Earthquake Engineering Purposes”, Saxe-Coburg Publications, Computational Methods for Engineering Technology, B.H.V. Topping and P. Iványi, (Editors) Saxe-Coburg Publications, Stirlingshire, Scotland.

Journal papers by research theme (incl. selected conference papers)

Multi-hazard Risk of Critical Infrastructure

Offshore Wind Turbines

[J.93]   Zhang, Z., de Risi, R., & Sextos, A. G. (2023). Multi‐hazard fragility assessment of monopile offshore wind turbines under earthquake, wind and wave loads. Earthquake Engineering & Structural Dynamics, 52(9), 2658–2681.
https://doi.org/10.1002/eqe.3888       

[J.72]   Ali, A., de Risi, R., & Sextos, A. G. (2021). Seismic assessment of wind turbines: How crucial is rotor-nacelle-assembly numerical modelling? Soil Dynamics and Earthquake Engineering, 141, 106483.
https://doi.org/10.1016/j.soildyn.2020.106483

[J.67]   Ali, A., de Risi, R., & Sextos, A. G. (2020). Finite element modelling optimization of wind turbine blades from an earthquake engineering perspective. Engineering Structures, 222, 111105.
https://doi.org/10.1016/j.engstruct.2020.111105

[J.56]   Ali, A., de Risi, R., Sextos, A. G., Goda, K., & Chang, Z. (2020). Seismic vulnerability of offshore wind turbines to pulse and non‐pulse records. Earthquake Engineering & Structural Dynamics, 49(1), 24–50.
https://doi.org/10.1002/eqe.3222       


Natural Gas Pipelines

[J.92]   Makrakis, N., Psarropoulos, P. N., Sextos, A. G., & Tsompanakis, Y. (2023). Do soft soil layers reduce the seismic kinematic distress of onshore high-pressure gas pipelines? Bulletin of Earthquake Engineering.
https://doi.org/10.1007/s10518-023-01668-0 

[J.61]   Tsinidis, G., di Sarno, L., Sextos, A. G., & Furtner, P. (2020). Optimal intensity measures for the structural assessment of buried steel natural gas pipelines due to seismically-induced axial compression at geotechnical discontinuities. Soil Dynamics and Earthquake Engineering, 131, 106030.
https://doi.org/10.1016/j.soildyn.2019.106030

[J.58]   Psyrras, N., Sextos, A. G., Crewe, A., Dietz, M., & Mylonakis, G. (2020). Physical Modeling of the Seismic Response of Gas Pipelines in Laterally Inhomogeneous Soil. Journal of Geotechnical and Geoenvironmental Engineering, 146(5).
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002242

[J.57]   Tsinidis, G., di Sarno, L., Sextos, A., & Furtner, P. (2020). Seismic fragility of buried steel natural gas pipelines due to axial compression at geotechnical discontinuities. Bulletin of Earthquake Engineering, 18(3), 837–906.
https://doi.org/10.1007/s10518-019-00736-8 

[J.53]   Tsinidis, G., di Sarno, L., Sextos, A., & Furtner, P. (2019). A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 2: Pipe analysis aspects. Tunnelling and Underground Space Technology, 92, 103056.
https://doi.org/10.1016/j.tust.2019.103056    

[J.50]   Tsinidis, G., di Sarno, L., Sextos, A., & Furtner, P. (2019). A critical review on the vulnerability assessment of natural gas pipelines subjected to seismic wave propagation. Part 1: Fragility relations and implemented seismic intensity measures. Tunnelling and Underground Space Technology, 86, 279–296.
https://doi.org/10.1016/j.tust.2019.01.025     

[J.49]   Psyrras, N. K., Kwon, O., Gerasimidis, S., & Sextos, A. G. (2019). Can a buried gas pipeline experience local buckling during earthquake ground shaking? Soil Dynamics and Earthquake Engineering, 116, 511–529.
https://doi.org/10.1016/j.soildyn.2018.10.027

[J.41]   de Risi, R., de Luca, F., Kwon, O.-S., & Sextos, A.G. (2018). Scenario-Based Seismic Risk Assessment for Buried Transmission Gas Pipelines at Regional Scale. Journal of Pipeline Systems Engineering and Practice, 9(4).
https://doi.org/10.1061/(ASCE)PS.1949-1204.0000330       

[J.40]   Psyrras, N. K., & Sextos, A. G. (2018). Safety of buried steel natural gas pipelines under earthquake-induced ground shaking: A review. Soil Dynamics and Earthquake Engineering, 106, 254–277.
https://doi.org/10.1016/j.soildyn.2017.12.020           


Nuclear Power Plants

[J.34]   Sextos, A. G., Manolis, G. D., Ioannidis, N., & Athanasiou, A. (2017). Seismically induced uplift effects on nuclear power plants. Part 2: Demand on internal equipment. Nuclear Engineering and Design, 318, 288–296.
https://doi.org/10.1016/j.nucengdes.2016.12.036

[J.33]   Sextos, A. G., Manolis, G. D., Athanasiou, A., & Ioannidis, N. (2017). Seismically induced uplift effects on nuclear power plants. Part 1: Containment building rocking spectra. Nuclear Engineering and Design, 318, 276–287.
https://doi.org/10.1016/j.nucengdes.2016.12.035


School Buildings

[J.94]   Giarlelis, C., Repapis, C., Lamprinou, E., Mylonakis, G., Manolis, G., & Sextos, A. G. (2023). Seismic performance and SSI effects of a two-storey RC school building during the 2014 Cephalonia, Greece, earthquake sequence. Bulletin of Earthquake Engineering, 21(9), 4643–4667.
https://doi.org/10.1007/s10518-023-01698-8 

[J.70]   Giordano, N., de Luca, F., Sextos, A. G., Ramirez Cortes, F., Fonseca Ferreira, C., & Wu, J. (2021). Empirical seismic fragility models for Nepalese school buildings. Natural Hazards, 105(1), 339–362.
https://doi.org/10.1007/s11069-020-04312-1 

[J.55]   Giordano, N., de Luca, F., & Sextos, A. G. (2020). Out-of-plane closed-form solution for the seismic assessment of unreinforced masonry schools in Nepal. Engineering Structures, 203, 109548.
https://doi.org/10.1016/j.engstruct.2019.109548

Journal papers by research theme (incl. selected conference papers)

Infrastructure Network and Community Resilience

Highway Networks Resilience Framework

[J.47]   Kilanitis, I., & Sextos, A. G. (2019). Impact of earthquake-induced bridge damage and time evolving traffic demand on the road network resilience. Journal of Traffic and Transportation Engineering (English Edition), 6(1), 35–48.
https://doi.org/10.1016/j.jtte.2018.07.002      

[J.45]   Kilanitis, I., & Sextos, A. G. (2019). Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bulletin of Earthquake Engineering, 17(1), 181–210.
https://doi.org/10.1007/s10518-018-0457-y   

[JNR.01]  Kappos, A. Sextos, A.G., Stefanidou, S., Mylonakis, G., Pitsiava, M, & G. Sergiadis (2014) “Seismic Risk of Inter-Urban Transformational Networks”, Procedia Economics and Finance, Volume 18, 2014, Pages 263–270.

[BC.19]    Sextos, A.G. & Kilanitis, J., (2020) “Α decision-making framework for enhancing resilience of road networks in earthquake regions”, in Resilience of Critical Infrastructure Systems: Emerging Developments and Future Challenges, CRC Press, Taylor and Francis Group, Wu, Z., Lu, X., Noori, M. (eds).


Community Resilience

[J.101] Agarwal, J., Parajuli, R., Xanthou, M., Sextos, A.G. (2023) “Safer and Resilient Schools in Seismic Regions: A Systems Perspective”, Civil Engineering and Environmental Systems.
https://doi.org/10.1080/10286608.2023.2289568.

[J.78]   Freddi, F., Galasso, C., Cremen, G., Dall’Asta, A., di Sarno, L., Giaralis, A., Gutiérrez-Urzúa, F., Málaga-Chuquitaype, C., Mitoulis, S. A., Petrone, C., Sextos, A. G., Sousa, L., Tarbali, K., Tubaldi, E., Wardman, J., & Woo, G. (2021). Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 60, 102267.
https://doi.org/10.1016/j.ijdrr.2021.102267   

[IC.121] Parajuli, R., Xanthou, M., Agarwal, J., Sextos, A.G. (2022) “Smart tools on for self-assessing community resilience in seismic regions: a case study from Nepal”, 3rd European Conference on Earthquake Engineering and Seismology, Bucharest, 4-9 September.


Risk And Loss Assessment At A Network/city Level

[J.10]   Kappos, A. J., Panagopoulos, G. K., Sextos, A. G., Papanikolaou, V. K., & Stylianidis, K. C. (2010). Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city – structural aspects. Earthquakes and Structures, 1(2), 197–214.
https://doi.org/10.12989/eas.2010.1.2.197

Journal papers by research theme (incl. selected conference papers)

Seismic Protection of Heritage and Masonry Structures

Seismic Strengthening Of Masonry Structures

[J.96]   Aminulai, H. O., Baiguera, M., Crump, D. A., Sextos, A. G., & Kashani, M. M. (2023). Experimental qualification of seismic strengthening of URM buildings in Nepal. Soil Dynamics and Earthquake Engineering, 173, 108130.
https://doi.org/10.1016/j.soildyn.2023.108130          

[J.76]   Giordano, N., Norris, A., Manandhar, V., Shrestha, L., Paudel, D. R., Quinn, N., Rees, E., Shrestha, H., Marasini, N. P., Prajapati, R., Guragain, R., de Luca, F., & Sextos, A. G. (2021). Financial assessment of incremental seismic retrofitting of Nepali stone-masonry buildings. International Journal of Disaster Risk Reduction, 60, 102297.
https://doi.org/10.1016/j.ijdrr.2021.102297   

[J.71]   Giordano, N., de Luca, F., & Sextos, A. G. (2021). Analytical fragility curves for masonry school building portfolios in Nepal. Bulletin of Earthquake Engineering, 19(2), 1121–1150.
https://doi.org/10.1007/s10518-020-00989-8


Probabilistic Assessment Of Masonry/stone Structures

[J.95]   di Michele, F., Spacone, E., Camata, G., Brando, G., Sextos, A. G., Crewe, A., Mylonakis, G., Diez, M., Dihoru, L., & Varum, H. (2023). Shaking table test and numerical analyses of a full scale three-leaf masonry wall. Bulletin of Earthquake Engineering, 21(10), 5041–5081.
https://doi.org/10.1007/s10518-023-01705-y

[J.70]   Giordano, N., de Luca, F., Sextos, A. G., Ramirez Cortes, F., Fonseca Ferreira, C., & Wu, J. (2021). Empirical seismic fragility models for Nepalese school buildings. Natural Hazards, 105(1), 339–362.
https://doi.org/10.1007/s11069-020-04312-1 

[J.55]   Giordano, N., de Luca, F., & Sextos, A. G. (2020). Out-of-plane closed-form solution for the seismic assessment of unreinforced masonry schools in Nepal. Engineering Structures, 203, 109548.
https://doi.org/10.1016/j.engstruct.2019.109548

[J.08]   Stylianidis, K.-A., & Sextos, A. G. (2009). Back Analysis of Thessaloniki Byzantine Land Walls as a Means to Assess its Seismic History. International Journal of Architectural Heritage, 3(4), 339–361.
https://doi.org/10.1080/15583050902862752


Free-standing Columns

[J.31]   Pappas, A., Sextos, A. G., da Porto, F., & Modena, C. (2017). Efficiency of alternative intensity measures for the seismic assessment of monolithic free-standing columns. Bulletin of Earthquake Engineering, 15(4), 1635–1659.
https://doi.org/10.1007/s10518-016-0035-0


Preservation Of Antiquities Within A City Environment

[J.32]   Anagnostopoulos, C., Sextos, A. G., Bikas, D., Stylianidis, K., Angelides, D., Avramidis, I., & Kyrkopoulou, K. (2017). Alternative Solutions to Preserve the Revealed Byzantine Antiquities at the Venizelou Metro Station of Thessaloniki. International Journal of Architectural Heritage, 11(4), 539–553.
https://doi.org/10.1080/15583058.2016.1266415

Journal papers by research theme (incl. selected conference papers)

Earthquake Reconnaissance Missions, Data Management and Preparedness Policy

Earthquake Reconnaissance

[J.87]   Mavroulis, S., Ilgac, M., Tunçağ, M., Lekkas, E., Püskülcü, S., Kourou, A., Sextos, A. G., Mavrouli, M., Can, G., Thoma, T., Manousaki, M., & Karveleas, N. (2022). Emergency response, intervention, and societal recovery in Greece and Turkey after the 30th October 2020, MW = 7.0, Samos (Aegean Sea) earthquake. Bulletin of Earthquake Engineering, 20(14), 7933–7955.
https://doi.org/10.1007/s10518-022-01317-y 

[J.84]   Cetin, K.-O., Mylonakis, G., Sextos, A. G., & Stewart, J. P. (2022). Reconnaissance of 2020 M 7.0 Samos Island (Aegean Sea) earthquake. Bulletin of Earthquake Engineering, 20(14), 7707–7712.
https://doi.org/10.1007/s10518-021-01212-y 

[J.48]   Stewart, J. P., Zimmaro, P., Lanzo, G., Mazzoni, S., Ausilio, E., Aversa, S., Bozzoni, F., Cairo, R., Capatti, M.-C., Castiglia, M., Chiabrando, F., Chiaradonna, A., d’Onofrio, A., Dashti, S., de Risi, R., de Silva, F., della Pasqua, F., Dezi, F., di Domenica, A., … Tropeano, G. (2018). Reconnaissance of 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 34(4), 1547–1555.
https://doi.org/10.1193/080317EQS151M     

[J.42]* Sextos, A. G., de Risi, R., Pagliaroli, A., Foti, S., Passeri, F., Ausilio, E., Cairo, R., Capatti, M.-C., Chiabrando, F., Chiaradonna, A., Dashti, S., de Silva, F., Dezi, F., Durante, M.-G., Giallini, S., Lanzo, G., Sica, S., Simonelli, A.-L., & Zimmaro, P. (2018). Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 34(4), 1639–1669.
* Outstanding Paper Award 2018, Earthquake Specta
https://doi.org/10.1193/100317EQS194M

[RR.06]    Andonov, A., Baballëku, M., Baltzopoulos, G., Blagojević, N., Bothara, J., Brzev, S., Freddi, F., Isufi, B., Gentile, R., Giarlelis, C., Greco, F., Guri, M., Marinkovicć, M.,  Markogiannaki, O., Milicćevicć, I., Novelli, V., Sextos, A., Sim, C., Skoulidou, D.,  Stefanidou, S., Veliu, E. (2021) “M6.4 Albania Earthquake on November 26, 2019. Volume 4: Building Performance”, EERI Earthquake Reconnaissance Report.


Datasets & Policy

[J.102] Baker, J. W., Crowley, H., Wald, D., Rathje, E., Au, S. K., Bradley, B. A., Burton, H., Cabas, A., Cattari, S., Cauzzi, C., Cavalieri, F., Contreras, S., Costa, R., Eguchi, R. T., Lallemant, D., Lignos, D. G., Maurer, B. W., Molina Hutt, C., Sextos, A. G., … Thompson, E. M. (2024). Sharing data and code facilitates reproducible and impactful research. Earthquake Spectra.
https://doi.org/10.1177/87552930241259397

[J.75]   Vassiliou, M. F., Cengiz, C., Dietz, M., Dihoru, L., Broccardo, M., Mylonakis, G., Sextos, A. G., & Stojadinovic, B. (2021). Dataset from the shake table tests of a rocking podium structure. Earthquake Spectra, 37(3), 2107–2125.
https://doi.org/10.1177/8755293020988017  

[J.59]   Gilder, C. E. L., Pokhrel, R. M., Vardanega, P. J., de Luca, F., de Risi, R., Werner, M. J., Asimaki, D., Maskey, P. N., & Sextos, A. G. (2020). The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability. Earthquake Spectra, 36(3), 1549–1569.
https://doi.org/10.1177/8755293019899952  


Pre- And Post-earthquake Rapid Visual Inspection

[J.05]   Sextos, A. G., Kappos, A. J., & Stylianidis, K. C. (2007). Computer-Aided Pre- and Post-Earthquake Assessment of Buildings Involving Database Compilation, GIS Visualization, and Mobile Data Transmission. Computer-Aided Civil and Infrastructure Engineering, 23(1), 59–73.
https://doi.org/10.1111/j.1467-8667.2007.00513.x

Journal papers by research theme (incl. selected conference papers)

Eurocodes Assessment and Design Tools

[J.28]   Papanikolaou, V. K., & Sextos, A. G. (2016). Design charts for rectangular R/C columns under biaxial bending: A historical review toward a Eurocode 2 compliant update. Engineering Structures, 115, 196–206.
https://doi.org/10.1016/j.engstruct.2016.02.033

[J.17]   Skrekas, P., Sextos, A. G., & Giaralis, A. (2014). Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings. Earthquakes and Structures, 6(1), 71–87.
https://doi.org/10.12989/eas.2014.6.1.071     

[J.14]   Salonikios, T. N., Sextos, A. G., & Kappos, A. J. (2012). Tests on composite slabs and evaluation of relevant Eurocode 4 provisions. Steel & Composite Structures, 13(6), 571–586.
https://doi.org/10.12989/scs.2012.13.6.571   

[J.11]   Sextos, A. G., Katsanos, E. I., & Manolis, G. D. (2011). EC8-based earthquake record selection procedure evaluation: Validation study based on observed damage of an irregular R/C building. Soil Dynamics and Earthquake Engineering, 31(4), 583–597.
https://doi.org/10.1016/j.soildyn.2010.10.009

[J.07]   Sextos, A. G., & Kappos, A. J. (2009). Evaluation of seismic response of bridges under asynchronous excitation and comparisons with Eurocode 8-2 provisions. Bulletin of Earthquake Engineering, 7(2), 519–545.
https://doi.org/10.1007/s10518-008-9090-5

[J.04]   Paraskeva, T. S., Kappos, A. J., & Sextos, A. G. (2006). Extension of modal pushover analysis to seismic assessment of bridges. Earthquake Engineering & Structural Dynamics, 35(10), 1269–1293.
https://doi.org/10.1002/eqe.582

[IC.115] Sextos, A.G., Crewe, A., Dietz, M., Wardrop, G., (2020) “Design of a high-performance Hexapod shaking table to meet the requirements in the latest seismic qualification codes”, 17th World Conference of Earthquake Engineering, Sendai, Japan.

Journal papers by research theme (incl. selected conference papers)

AI, Machine Learning and Expert Systems

ANN

[J.100] Liu, Z., Guoc, A., Zhaoa, C. and A. G. Sextos (2023) Seismic Response of Bridges employing Knowledge-Enhanced Neural Networks for the Lumped Plasticity Modelling of RC Piers, Bulleting of Earthquake Engineering.
https://doi.org/10.1007/s10518-023-01825-5

[J.98]   Chen, P.-Y., Lesgidis, N., Sextos, A. G., & Taciroglu, E. (2023). A Method for automated development of model and fragility inventories of nonductile reinforced concrete buildings. Resilient Cities and Structures, 2(3), 87–103.
https://doi.org/10.1016/j.rcns.2023.08.002    

[J.88]   Liu, Z., Sextos, A., Guo, A., & Zhao, W. (2022). ANN-based rapid seismic fragility analysis for multi-span concrete bridges. Structures, 41, 804–817.
https://doi.org/10.1016/j.istruc.2022.05.063  

[J.51]   Mergos, P. E., & Sextos, A. G. (2019). Selection of earthquake ground motions for multiple objectives using genetic algorithms. Engineering Structures, 187, 414–427.
https://doi.org/10.1016/j.engstruct.2019.02.067


Expert Systems

[J.39]   Psyrras, N. K., & Sextos, A. G. (2018). Build-X: Expert system for seismic analysis and assessment of 3D buildings using OpenSees. Advances in Engineering Software, 116, 23–35.
https://doi.org/10.1016/j.advengsoft.2017.11.007

[J.13]   Manos, G. C., Mitoulis, S. A., & Sextos, A. G. (2012). A knowledge-based software for the preliminary design of seismically isolated bridges. Bulletin of Earthquake Engineering, 10(3), 1029–1047.
https://doi.org/10.1007/s10518-011-9320-0   


Information And Communication Technologies

[J.18]   Sextos, A. G. (2014). ICT Applications for New Generation Seismic Design, Construction and Assessment of Bridges. Structural Engineering International, 24(2), 173–183.
https://doi.org/10.2749/101686614X13830790993726

[J.16]   Sextos, A. G. (2014). A paperless course on structural engineering programming: investing in educational technology in the times of the Greek financial recession. European Journal of Engineering Education, 39(1), 18–30.
https://doi.org/10.1080/03043797.2013.824413

[J.12]   Katsanos, E. I., Taskari, O. N., & Sextos, A. G. (2014). A matlab-based educational tool for the seismic design of flexibly supported RC buildings. Computer Applications in Engineering Education, 22(3), 442–451.
https://doi.org/10.1002/cae.20568      

Journal papers by research theme (incl. selected conference papers)

Mitigation of ground-borne vibrations

[J.62]   Lesgidis, N., Sextos, A. G., Moschen, L., Gutierrez Gomez, J. S., & Pistone, E. (2020). Rigorous vehicle-soil-track simulation of high-speed rail through optimization-based model order reduction. Transportation Geotechnics, 23 (September 2019), 100350.
https://doi.org/10.1016/j.trgeo.2020.100350
  

 

Journal papers by research theme (incl. selected conference papers)